organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ben W. Greatrex,^a Marc C. Kimber,^a Dennis K. Taylor^a and Gary D. Fallon^b*

^aDepartment of Chemistry, University of Adelaide, South Australia 5005, Australia, and ^bSchool of Chemistry, PO Box 23, Monash University, Victoria 3800, Australia

Correspondence e-mail: g.fallon@sci.monash.edu.au

Key indicators

Single-crystal X-ray study T = 123 KMean $\sigma(C-C) = 0.002 \text{ Å}$ R factor = 0.045 wR factor = 0.096 Data-to-parameter ratio = 17.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(\pm) -2-Oxo-4-(2-oxo-2-phenylethyl)-5-phenyltetrahydrofuran-3-carboxylic acid

The stereochemistry about the lactone ring system of the title compound, $C_{19}H_{16}O_5$, has been established. Intermolecular hydrogen bonds are observed between carboxylic acid groups.

Received 18 January 2002 Accepted 25 January 2002 Online 22 February 2002

Comment

To establish the stereochemistry about the lactone ring system of (\pm) -ethyl 2-oxo-4-(2-oxo-2-phenylethyl)-5-phenyltetrahydrofuran-3-carboxylate (Greatrex *et al.*, 2002), the structure of the derived acid, (I), was determined. The molecular structure of (I) is shown in Fig. 1. A centrosymmetric dimer is formed through a strong intermolecular hydrogen bond between centrosymmetrically related carboxylic acid groups (Table 1).

Experimental

The title compound was prepared by base-catalysed hydrolysis of the parent ethyl ester, as previously described (Greatrex *et al.*, 2002). Crystals suitable for X-ray analysis were grown by slow evaporation from a CH_2Cl_2 /hexane (1:1) solution of the compound.

$C_{19}H_{16}O_5$	$D_x = 1.364 \text{ Mg m}^{-3}$
$M_r = 324.32$	Mo $K\alpha$ radiation
Monoclinic, $C2/c$	Cell parameters from 20303
a = 30.0282 (4) Å	reflections
b = 8.9226 (1) Å	$\theta = 3.4-28.3^{\circ}$
c = 12.1979 (2) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 104.884 \ (1)^{\circ}$	T = 123 (2) K
V = 3158.52 (8) Å ³	Prismatic, colourless
Z = 8	$0.27 \times 0.13 \times 0.10 \text{ mm}$
Data collection	
Nonius KappaCCD diffractometer	$R_{\rm int} = 0.037$

Nonius KappaCCD diffractometer $R_{\rm int} = 0.037$ Thick slice scans $\theta_{\rm max} = 28.3^{\circ}$ 21591 measured reflections $h = -40 \rightarrow 40$ 3871 independent reflections $k = -11 \rightarrow 11$ 3023 reflections with $I > 2\sigma(I)$ $l = -16 \rightarrow 15$

 \bigcirc 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

View of (I) (50% probability displacement ellipsoids).

Refinement

 $\begin{array}{ll} \mbox{Refinement on } F^2 & w = 1/[\sigma^2(F_o^2) + (0.033P)^2 \\ R[F^2 > 2\sigma(F^2)] = 0.045 & + 2.4814P] \\ wR(F^2) = 0.096 & where \ P = (F_o^2 + 2F_c^2)/3 \\ S = 1.03 & (\Delta/\sigma)_{\rm max} < 0.001 \\ 3871 \ {\rm reflections} & \Delta\rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3} \\ 218 \ {\rm parameters} & \Delta\rho_{\rm min} = -0.21 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

Table 1

Hydrogen-bonding geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overline{O4-H4\cdots O3^{i}}$	0.84	1.84	2.6782 (14)	178
Symmetry code: (i)	-x, 1-y, 1-z	<i>.</i>		

The H atoms were included in the riding-model approximation.

Data collection: *COLLECT* (Nonius, 1997–2000); cell refinement: *HKL SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *HKL DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* for Windows (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This work was supported by the Australian Research Council (ARC).

References

- Greatrex, B. W., Kimber, M. C., Taylor, D. K., Fallon, G. D. & Tiekink, E. R. T. (2002). J. Org. Chem. Submitted.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Nonius (1997–2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter and R. M. Sweet, pp. 307–326. London: Academic Press.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.